1. he LCM and HCF of the following pairs of integers and verify that LCM X HCF =product of integers
(i) 26 and 91 (ii) 510 and 92 (iii) 336 and 54

$\mathrm{HCF}=13 \quad \mathrm{LCM}=13 \times 2 \times 7=182$

Ist number $\times 2^{\text {nd }}$ number $=$ HCF X LCM $26 \times 91=13 \times 182=2366$
2. Find the LCM and HCF of the following integers by applying the prime factorization method
(i) 12,15 and 21 (ii) 17,23 and 29 (iii) 8,9 and 25 (iv) 40,36 and 126
(v) 84,90 and 126 (vi) 24,15 and 36

Solution -(I) $12=2 \times 2 \times 3 \quad H C F=3$
$15=3 \times 5 \quad L C M=2 \times 2 \times 3 \times 5 \times 7=720$

21=3 X7
3. Find the greatest number of 6-digit exactly divisible by 24,15 and 36

Solution- The greatest 6-digit number is 999999

To find the LCM of 15,24,36

| 2 | $15,24,36$ |
| :--- | :--- |
| 2 | $15,12,18$ |
| 3 | $15,6,9$ |
|  | $5,2,3$ |

LCM $=2 \times 2 \times 3 \times 5 \times 2 \times 3=360$

The greatest 6-digit number is 999999-360=999720
4. A rectangular courtyard is 18 m 72 cm long and 13 m 20 cm broad . it is to be paved

With square tiles of same size .find the least possible numbers of such tiles

## Solution- length $=1872 \mathrm{~cm}$ breadth $=1320 \mathrm{~cm}$

HCF of 1872 and 1320 is 24
No. of tiles $=\frac{\text { area of courtyard }}{\text { area of one tile }}=\frac{1872 \times 1320}{24}=4290$
5. Find the least numbers that is divisible by all the numbers between 1 and 10
(both inclusive)
Solution- Find the LCM of $1,2,3,4,5,6,7,8,9,10$


This is the required number
6. What is the smallest number that when divided by 35,56 and 91 leaves remainders 7 of in each case?.

Solution- The LCM of 35,56 and 91


Hence required number is $3640+7=3647$
7. In morning walk three persons step off together ,their steps measure 80 cm
, 85 cm and 90 cm respectively . what is the minimum distance each shoud walk so
that he can cover the distance in complete steps ?
Solution- The LCM of 80,85and 90

| 2 | $80,85,90$ |
| :--- | :--- |
| 5 | $, 40,85,45$ |
| 5 | 17,9 |
|  |  |

LCM $=2 \times 5 \times 5 \times 17 \times 9=12240=122 \mathrm{~m} 40 \mathrm{~cm}$
8. Determine the number nearest to 110000 but greater than 100000 which is exactly divisible by 8,15 and 21

9. find the smallest number which leaves rentainders 8 and 12 when divided by 28 and 32 respectively

Solution- The LCM of 28 and 32

| 2 | 28,32 |
| :--- | :--- |
| 2 | 14,16 |
|  |  |
|  |  |

LCM $=2 \times 2 \times 7 \times 8=224$

But remainders are 8 and 12

So required number $=224-20=204$
10. Find the smallest number which when increased by 17 is exactly divisible by
both 520 and 468


LCM $=2 \times 2 \times 13 \times 9 \times 10=4680$

Required number $=4680-17=4663$
11. A circular field has a circumference of 360 km . Three cyclist starts together and can cycle 48,60 and 72 km a day, round the field When will they meet again?
12. The LCM and HCF of two numbers are 180 and 6 respectively. If one of the numbers is 30 , find the other number.

Solution- $1^{\text {st }}$ no. $\times 2^{\text {nd }}$ no. $=$ LCMx HCF
30. $\times 2^{\text {nd }}$ no. $=180 \times 6$

$$
2^{\text {nd }} \text { no. }=\frac{180 x 6}{30}=36
$$

13. The HCF of two numbers is 16 and their product is 3072 . Find their LCM

Solution- $1^{\text {st }}$ no. $\times 2^{\text {nd }}$ no. $=$ LCMx HCF

$$
\begin{aligned}
3072 & =\operatorname{LCM} \times 16 \\
L C M & =\frac{3072}{16}=192
\end{aligned}
$$

14. The HCF of two numbers is 145 and their LCM is 2175 . If one of the
numbers is 725 , find the other number.
Solution- $1^{\text {st }}$ no. $\times 2^{\text {nd }}$ no. $=$ LCMx HCF
$725 \times 2^{\text {nd }}$ no. $=2175 \times 145$
$2^{\text {nd }}$ no. $=\frac{2175 \times 145}{725}=435$
15. Can two numbers have 16 as their HCF and 380 as their LCM? Give reason

Solution- No, because 380 is not divisible by 16

(vi) $x^{2}-(\sqrt{3}+1) x+\sqrt{3}$
$\left(x^{2}-\sqrt{3} x\right)-(x+\sqrt{3})$
$x(x-\sqrt{3})-1(x-\sqrt{3})$
$(x-\sqrt{3})(x-1)=0$
$x=\sqrt{3}, 1$
Sum $=\sqrt{3}+1$
Product $=\sqrt{3} \times 1=\sqrt{3}$
(vii) $a\left(x^{2}+1\right)-x\left(a^{2}+1\right)$
$a x^{2}+a-x a^{2}-x$
$a x^{2}-\left(a^{2}+1\right) x+a$
$\left(a x^{2}-x a^{2}\right)-(x+a)$
$a x(x-a)-1(x-a)=0$
$(x-a)(a x-1)=0$
$\mathrm{X}=\mathrm{a}, \frac{1}{a}$
Sum $=\frac{a^{2}+1}{a}$
Product= a $\times \frac{1}{a}=1$

$$
\text { sum }=\frac{-(\text { co-efficient of } x)}{\text { co-efficient of } x^{2}}=\frac{-\{-(\sqrt{3}+1)\}}{1}=\sqrt{3}+1
$$

$$
\text { product }=\frac{\text { constant term }}{\text { co-efficient of } x^{2}}=\frac{\sqrt{3}}{1}=\sqrt{3}
$$

sum $=\frac{-(\text { co-efficient of } x)}{\text { co-efficient of } x^{2}}=\frac{-\left\{-\left(a^{2}+1\right)\right\}}{a}$ $=\frac{a^{2}+1}{a}$
product $=\frac{\text { constant term }}{\text { co-efficient of } x^{2}}=\frac{a}{a}=1$

Part no. (ii) (iii) and (iv) are similar

Q2- if $\alpha$ and $\beta$ are the zeros of quadratic polynomials $a x^{2}+b x+c$ then evaluate
(i) $\alpha-\beta$
(iii) $\frac{1}{\alpha}-\frac{1}{\beta}-2 \alpha \beta$
(iv) $\alpha^{2} \beta+\alpha \beta^{2}($ v $) \alpha^{4}+\beta^{4}($ vi $) \frac{1}{a \alpha+b}+\frac{1}{a \beta+b}$
(ii) $\frac{1}{\alpha}-\frac{1}{\beta} \quad$ (vii) $\frac{\beta}{a \alpha+b}+\frac{\alpha}{a \beta+b}$

Solution- the zeros of quadratic polynomial is

$$
\begin{aligned}
& \alpha=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \quad \beta=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} \\
& \alpha-\beta=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}-\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{\left(-b+\sqrt{b^{2}-4 a c}\right)-\left(-b-\sqrt{\left.b^{2}-4 a c\right)}\right.}{2 a} \\
& = \\
& \frac{-b \neq \sqrt{b^{2}-4 a c}+b /+\sqrt{b^{2}-4 a c}=2 \sqrt{b^{2} /-4 a c}}{2 a} \quad 2 a \\
& =\sqrt{b^{2}-4 a c}
\end{aligned}
$$

a
(ii) $\frac{\alpha-\beta}{\alpha \beta}$
$\alpha-\beta=\sqrt{b^{2}-4 a c}$
a
$\alpha \beta=-\mathrm{b}+\sqrt{b^{2}}-4 \mathrm{ac} \quad-\mathrm{b}+\sqrt{b^{2}}-4 \mathrm{ac}$


$$
\frac{(-b)^{2}-\left(\sqrt{\left.b^{2}-4 a c\right)^{2}}\right.}{4 a^{2}}
$$


(iii) $\frac{1}{\alpha}+\frac{1}{\beta}-2 \alpha \beta \quad \frac{\alpha+\beta}{\alpha \beta}-2 \alpha \beta=(-b) / a-2-\frac{c}{a}=-\left\{\frac{b}{c}+\frac{2 c}{a}\right\}$

$$
c / a
$$

(iv) $\boldsymbol{\alpha}^{2} \boldsymbol{\beta}+\boldsymbol{\alpha} \boldsymbol{\beta}^{2}=\alpha \beta(\alpha+\beta)=\frac{\mathrm{c}}{\mathrm{a}} \times \frac{-b}{a}=\frac{-b c}{a^{2}}$
(v) $\boldsymbol{\alpha}^{4}+\boldsymbol{\beta}^{4}$ Solve on page no. 229 example 8 RDSAHARMA
(vi) $\frac{1}{\mathrm{a} \alpha+b}+\frac{1}{a \beta+b}=\frac{a \beta+b+\mathrm{a} \alpha+b}{(\mathrm{a} \alpha+b)(a \beta+b)}=\frac{a(\alpha+\beta)+2 b}{a^{2}(\alpha \beta)+a b(\alpha+\beta)+b^{2}}$

$$
=\frac{a\left(\frac{-b}{a}\right)+2 b}{a^{2}\left(\frac{c}{a}\right)+a b\left(\frac{-b}{a}\right)+b^{2}}=\frac{b}{a c}\left\{\alpha+\beta=\frac{-b}{a}, \alpha \beta=\frac{c}{a}\right\}
$$

(vii) $\frac{\beta}{\mathrm{a} \alpha+b}+\frac{\alpha}{a \beta+b}=\frac{\beta(a \beta+b)+\alpha(\mathrm{a} \alpha+b)}{(\mathrm{a} \alpha+b)(a \beta+b)}=\frac{\beta(a \beta+b)+\alpha(\mathrm{a} \alpha+b)}{(\mathrm{a} \alpha+b)(a \beta+b)}$
$=\frac{a\left(\alpha^{2}+\beta^{2}\right)+b(\alpha+\beta)}{a^{2}(\alpha \beta)+a b(\alpha+\beta)+b^{2}}$
$=\left(\alpha^{2}+\beta^{2}\right)=(\alpha+\beta)^{2}-2 \alpha \beta$
$=\frac{a(\alpha+\beta)^{2}-2 a \beta+b(\alpha+\beta)}{a^{2}(\alpha \beta)+a b(\alpha+\beta)+b^{2}}=\frac{a\left(\frac{-b}{a}\right)^{2}-2 \frac{c}{a}+b\left(\frac{-b}{a}\right)}{a^{2}\left(\frac{c}{a}\right)+a b\left(\frac{-b}{a}\right)+b^{2}}=\frac{-2}{a^{2}}$
Q3- $6 x^{2}+x-2$ evaluate $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}$
Solution $-\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta}$
sum $=\frac{-(\text { co-efficient of } x)}{\text { co-efficient of } x^{2}} \quad$, product $=\frac{\text { constant term }}{\text { co-efficient of } x^{2}}$
$\alpha+\beta=\frac{-1}{6} \quad \alpha \beta=\frac{-2}{6}=\frac{-1}{3}$
$\frac{\left(\frac{-1}{6}\right)^{2}-2\left(\frac{-1}{3}\right)}{\frac{-1}{3}}=\frac{-25}{12}$
Q4- $x^{2}-x-4$, evaluate $\quad \frac{1}{\alpha}+\frac{1}{\beta}-\alpha \beta$
Solution- sum $=\frac{-(\text { co-efficient of } x)}{\text { co-efficient of } x^{2}} \quad$, product $=\frac{\text { constant term }}{\text { co-efficient of } x^{2}}$
$\alpha+\beta=\frac{-(-1)}{1}=1 \quad \alpha \beta=\frac{-4}{1}=-4$
$=\frac{1}{\alpha}+\frac{1}{\beta}-\alpha \beta$

$$
=\frac{\alpha+\beta}{\alpha \beta}-\alpha \beta==\frac{1}{-4}-(-4)=\frac{15}{4}
$$

Q5-p $(x)=4 x^{2}-5 x-1$ evaluate $\boldsymbol{\alpha}^{2} \boldsymbol{\beta}+\boldsymbol{\alpha} \boldsymbol{\beta}^{2}$
Solution - $\boldsymbol{\alpha}^{2} \boldsymbol{\beta}+\boldsymbol{\alpha} \boldsymbol{\beta}^{2}=\alpha \beta(\alpha+\beta)$
sum $=\frac{-(\text { co-efficient of } x)}{\text { co-efficient of } x^{2}} \quad$, product $=\frac{\text { constant term }}{\text { co-efficient of } x^{2}}$
$\alpha+\beta=\frac{-(-5)}{4} \alpha \beta=\frac{-1}{4}$
$=\alpha \beta(\alpha+\beta)=\frac{5}{4}\left(\frac{-1}{4}\right)=\frac{-5}{16}$
Q6-f $f(x)=x^{2}+x-2$ evaluate $\frac{1}{\alpha}-\frac{1}{\beta}$
Solution- $\frac{\mathbf{1}}{\boldsymbol{\alpha}}-\frac{\mathbf{1}}{\boldsymbol{\beta}}=\frac{\alpha-\beta}{\alpha \beta}$
Sum $=\frac{-(\text { co-efficient of } x)}{\text { co-efficient of } x^{2}}$, product $=\frac{\text { constant term }}{\text { co-efficient of } x^{2}}$
$\alpha+\beta=\frac{-1}{1}=-1, \quad \alpha \beta=\frac{-2}{1}=-2$
$\alpha-\beta=\sqrt{(\alpha+\beta)^{2}-4 \alpha \beta}$
$=\sqrt{(-1)^{2}-4 X-2}$
$=\sqrt{9}=3$
$=\frac{\alpha-\beta}{\alpha \beta}=\frac{3}{-2}$
Q7- $x^{2}-5 x+4$ evaluate,$\frac{1}{\alpha}+\frac{1}{\beta}-2 \alpha \beta$

Solution- sum $=\frac{-(\text { co-efficient of } x)}{\text { co-efficient of } x^{2}}, \quad$ product $=\frac{\text { constant term }}{\text { co-efficient of } x^{2}}$
$=\frac{\alpha+\beta}{\alpha \beta}-2 \alpha \beta$
$\alpha+\beta=\frac{-(-5)}{1}=5 \quad \alpha \beta=\frac{4}{1}=4$
$=\frac{5}{4}-2(4)=\frac{-27}{4}$
$\mathrm{Q} 8-\mathrm{f}(\mathrm{t})=\mathrm{t}^{2}-4 \mathrm{t}+3$ evaluate $\alpha^{4} \beta^{3}+\alpha^{3} \beta^{4}$
Solution - sum $=\frac{-(\text { co-efficient of } t)}{\text { co-efficient of } t^{2}}, \quad$ product $=\frac{\text { constant term }}{\text { co-efficient of } t^{2}}$
$\alpha+\beta=\frac{-(-4)}{1}=4 \quad \alpha \beta=\frac{3}{1}=3$
$=\alpha^{4} \beta^{3}+\alpha^{3} \beta^{4}=\alpha^{3} \beta^{3}(\alpha+\beta)=(\alpha \beta)^{3}(\alpha+\beta)$
$=(4)^{3}(3)=192$
Q9- $p(y)=5 y^{2}-7 y+1$ evaluate, $\frac{1}{\alpha}+\frac{1}{\beta}$
Solution -sum $=\frac{-(\text { co-efficient of } y)}{\text { co-efficient of } y^{2}}, \quad$ product $=\frac{\text { constant term }}{\text { co-efficient of } y^{2}}$
$\alpha+\beta=\frac{-(-7)}{5}=\frac{7}{5} \quad \alpha \beta=\frac{1}{5}$
$\frac{\alpha+\beta}{\alpha \beta}=\quad \frac{\frac{7}{5}}{\frac{1}{5}}=7$
Q10-p(s) $3 \mathrm{~s}^{2}-6 \mathrm{~s}+4$ evaluate , $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}+2\left\{\frac{1}{\alpha}+\frac{1}{\beta}\right\}+3 \alpha \beta$
Solution - sum $=\frac{-(\text { co-efficient of } s)}{\text { co-efficient of } s^{2}}$, product $=\frac{\text { constant term }}{\text { co-efficient of } s^{2}}$

$$
\begin{aligned}
& \alpha+\beta=\frac{-(-6)}{3}=2 \quad \alpha \beta=\frac{4}{3} \\
& =\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}+2\left\{\frac{\alpha+\beta}{\alpha \beta}\right\}+3 \alpha \beta \\
& =\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta}+2\left\{\frac{\alpha+\beta}{\alpha \beta}\right\}+3 \alpha \beta=\frac{(2)^{2}-2 x^{\frac{4}{3}}}{\frac{4}{3}}+2\left\{\frac{2}{\frac{4}{3}}\right\}+3 \times \frac{4}{3}=8
\end{aligned}
$$

$$
\text { Q11- } \mathrm{x}^{2}-\mathrm{px}+\mathrm{q} \text { prove that } \frac{\alpha^{2}}{\beta^{2}}+\frac{\beta^{2}}{\alpha^{2}}=\frac{p^{4}}{q^{2}}-\frac{4 p^{2}}{q}+2
$$

$$
\text { Solution }- \text { sum }=\frac{-(\text { co-efficient of } x)}{\text { co-efficient of } x^{2}}, \text { product }=\frac{\text { constant term }}{\text { co-efficient of } x^{2}}
$$

$$
\alpha+\beta=\frac{-(-p)}{1}=p \quad \alpha \beta=\frac{q}{1}=q
$$

$$
\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=(p)^{2}-2 q=p^{2}-2 q
$$

$$
\alpha^{2} \beta^{2}=q^{2}
$$

$$
=\frac{\alpha^{2}}{\beta^{2}}+\frac{\beta^{2}}{\alpha^{2}}=\frac{\alpha^{4}+\beta^{4}}{\alpha^{2} \beta^{2}}=\frac{\left(\alpha^{2}+\beta^{2}\right)^{2}-2 \alpha^{2} \beta^{2}}{\alpha^{2} \beta^{2}}=\frac{\left(p^{2}-2 q\right)^{2}-2 q^{2}}{q^{2}}
$$

$$
\frac{\left(p^{4}+4 q^{2}-4 p^{2} q\right)-2 q^{2}}{q^{2}}=\frac{p^{4}}{q^{2}}-\frac{4 p^{2}}{q}+2
$$

Q12-
Q13-if the sum of zeros of quadratic polynomials is $f(t)=k t^{2}+2 t+3 k$ Is equal totheir product,find the value of $k$

Solution - sum $=\frac{-(\text { co-efficient of } t)}{\text { co-efficient of } t^{2}}$, product $=\frac{\text { constant term }}{\text { co-efficient of } t^{2}}$

$$
\alpha+\beta=\frac{-(2)}{k}=\frac{-2}{k} \quad \alpha \beta=\frac{3 k}{k}=3
$$

According to statement

$$
\begin{aligned}
& \alpha+\beta=\alpha \beta \\
& \quad \frac{-2}{\mathrm{k}}=3, \mathrm{k}=\frac{-2}{3}
\end{aligned}
$$

Q14-

Q15-if $\alpha$ and $\beta$ are zeros of quadratic polynomial $f(x)=x^{2}-1$, find a quadratic polynomial whose zeros are $\frac{2 \alpha}{\beta}$ and $\frac{2 \beta}{\alpha}$

Solution - sum $=\frac{-(\text { co-efficient of } x)}{\text { co-efficient of } x^{2}}$, product $=\frac{\text { constant term }}{\text { co-efficient of } x^{2}}$

$$
\alpha+\beta=\frac{-(0)}{1}=0 \quad \alpha \beta=\frac{-1}{1}=-1
$$

$\operatorname{sum}=\frac{2 \alpha}{\beta}+\frac{2 \beta}{\alpha}=\frac{2 \alpha^{2}+2 \beta^{2}}{\alpha \beta}=\frac{2\left(\alpha^{2}+\beta^{2}\right)}{\alpha \beta}=\frac{2\left\{(\alpha+\beta)^{2}-2 \alpha \beta\right\}}{\alpha \beta}=\frac{2\left\{(0)^{2}-2 X-1\right\}}{-1}=-4$
product $=\frac{2 \alpha}{\beta} X \frac{2 \beta}{\alpha}=4$
Required polynomial is $f(x)=k\left(x^{2}-s x+p\right)$

$$
\begin{aligned}
& =k\left(x^{2}-(-4) x+4\right) \\
& =k\left(x^{2}+4 x+4\right)
\end{aligned}
$$

Q16- if $\alpha$ and $\beta$ are zeros of quadratic polynomial $f(x)=x^{2}-3 x-2$, find a quadratic polynomial whose zeros are $\frac{1}{2 \alpha+\beta}, \frac{1}{2 \beta+\alpha}$

Solution - sum $=\frac{-(\text { co-efficient of } x)}{\text { co-efficient of } x^{2}}$, product $=\frac{\text { constant term }}{\text { co-efficient of } x^{2}}$
$\alpha+\beta=\frac{-(-3)}{1}=3 \quad \alpha \beta=\frac{-2}{1}=-2$
$\operatorname{sum}=\frac{1}{2 \alpha+\beta}+\frac{1}{2 \beta+\alpha}=\frac{2 \beta+\alpha+2 \alpha+\beta}{(2 \alpha+\beta)(2 \beta+\alpha)}=\frac{3 \alpha+3 \beta}{\left(4 \alpha \beta+2 \beta^{2}+2 \alpha^{2}+\alpha \beta\right)}=\frac{3(\alpha+\beta)}{\left(5 \alpha \beta+2\left(\alpha^{2}+\beta^{2}\right)\right.}$
$\frac{3(\alpha+\beta)}{\left\{\left(5 \alpha \beta+2(\alpha+\beta)^{2}-2 \alpha \beta\right)\right\}}=\frac{3(3)}{\left\{\left(5 X-2+2\left\{(3)^{2}-2 X-2\right)\right\}\right\}}=\frac{9}{16}$
Product $=\frac{1}{2 \alpha+\beta} X \frac{1}{2 \beta+\alpha}=\frac{1}{(2 \alpha+\beta)(2 \beta+\alpha)}=\frac{1}{\left(4 \alpha \beta+2 \beta^{2}+2 \alpha^{2}+\alpha \beta\right)}=\frac{3(\alpha+\beta)}{\left(5 \alpha \beta+2\left(\alpha^{2}+\beta^{2}\right)\right.}$
$=\frac{1}{\left\{\left(5 \alpha \beta+2(\alpha+\beta)^{2}-2 \alpha \beta\right)\right\}}=\frac{1}{\left\{\left(5 X-2+2\left\{(3)^{2}-2 X-2\right)\right\}\right\}}=\frac{1}{16}$
Required polynomial is $f(x)=k\left(x^{2}-\frac{9}{16} x+\frac{1}{16}\right)$

Q17-- if $\alpha$ and $\beta$ are zeros of quadratic polynomial such that $\alpha+\beta=24$ and $\alpha-\beta=8$ find a quadratic polynomial whose zeros are $\alpha$ and $\beta$

Solution $-\alpha+\beta=24$

$$
\begin{aligned}
\alpha-\beta & =8 \\
2 \alpha & =32, \alpha=\frac{32}{2}=16, \beta=24-16=8, \alpha \beta=16 X 8=128
\end{aligned}
$$

Required polynomial is $f(x)=k\left(x^{2}-s x+p\right)$

$$
=k\left(x^{2}-24 x+128\right)
$$

Q18- if $\alpha$ and $\beta$ are zeros of quadratic polynomial $f(x)=x^{2}-p(x+1)-c$ then show that
$(\alpha+1)(\beta+1)=1-c$

Solution $-x^{2}-p x-p-c$
$=x^{2}-p x-(p+c)$
Sum $=\frac{-(\text { co-efficient of } x)}{\text { co-efficient of } x^{2}}, \quad$ product $=\frac{\text { constant term }}{\text { co-efficient of } x^{2}}$
$\alpha+\beta=\frac{-(-p)}{1}=\mathrm{p}, \alpha \beta=\frac{-(p+c)}{1}=-(\mathrm{p}+\mathrm{c})$
$(\alpha+1)(\beta+1)=(\alpha \beta+(\alpha+\beta)+1)=(-(p+c)+(p)+1)=1-c$
Q19- if $\alpha$ and $\beta$ are zeros of quadratic polynomial $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-2 \mathrm{x}+3$, find a quadratic polynomial whose zeros are (I) $\alpha+2, \beta+2\left(\right.$ (i) $\frac{\alpha-1}{\alpha+1}, \frac{\beta-1}{\beta+1}$

Solution - Sum $=\frac{-(\text { co-efficient of } x)}{\text { co-efficient of } x^{2}}, \quad$ product $=\frac{\text { constant term }}{\text { co-efficient of } x^{2}}$
$\alpha+\beta=\frac{-(-2)}{1}=2, \alpha \beta=\frac{3}{1}=3$
(i) sum $=\alpha+2+\beta+2=(\alpha+\beta)+4=2+4=6$
product $=(\alpha+2)(\beta+2)=\alpha \beta+2(\alpha+\beta)+4=3+2(2)+4=11$
Required polynomial is $f(x)=k\left(x^{2}-s x+p\right)$

$$
=k\left(x^{2}-6 x+11\right)
$$

(ii) $\frac{\alpha-1}{\alpha+1}, \frac{\beta-1}{\beta+1}$

Sum $=\frac{\alpha-1}{\alpha+1}+\frac{\beta-1}{\beta+1}=\frac{(\alpha-1)(\beta+1)+(\alpha+1)(\beta-1)}{(\alpha+1)(\beta+1)}=\frac{\alpha \beta-\beta+\alpha \not-1 \alpha \alpha \beta+\beta-\alpha-1 /}{(\alpha \beta+(\alpha+\beta)+1)}$
$=\frac{2 \alpha \beta-2}{(\alpha \beta+(\alpha+\beta)+1)}=\frac{2 \times 3-2}{(2+(3)+1)}=\frac{4}{6}=\frac{2}{3}$
Product $=\frac{\alpha-1}{\alpha+1} X \frac{\beta-1}{\beta+1}=\frac{(\alpha-1)(\beta-1)}{(\alpha+1)(\beta+1)}=\frac{(\alpha \beta-\beta-\alpha-1)}{(\alpha \beta+\beta+\alpha+1)}=\frac{(\alpha \beta-\{\beta+\alpha\}-1)}{(\alpha \beta+\{\beta+\alpha\}+1)}=\frac{(3-\{2\}+1)}{(3+\{2\}+1)}$
$\frac{2}{6}=\frac{1}{3}$
Required polynomial is $f(x)=k\left(x^{2}-\frac{2}{3} x+\frac{1}{3}\right)$

Q20- if $\alpha$ and $\beta$ are zeros of quadratic polynomial $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{px}+\mathrm{q}$, find a quadratic polynomial whose zeros are (I) $(\alpha+\beta)^{2},(\alpha-\beta)^{2}$

Solution - Sum $=\frac{-(\text { co-efficient of } x)}{\text { co-efficient of } x^{2}}, \quad$ product $=\frac{\text { constant term }}{\text { co-efficient of } x^{2}}$
$\alpha+\beta=\frac{-(p)}{1}=-\mathrm{p}, \alpha \beta=\frac{q}{1}=\mathrm{q}$
sum $=(\alpha+\beta)^{2}+(\alpha-\beta)^{2}=\left(\alpha^{2}+\beta^{2}+2 \alpha \beta \nLeftarrow \alpha^{2}+\beta^{2}-2 \alpha \beta\right) \neq 2\left(\alpha^{2}+\beta^{2}\right)=2\left\{(\alpha+\beta)^{2}-2 \alpha \beta\right\}$
$=2\left\{p^{2}-2 q\right\}$
Product $=(\alpha+\beta)^{2} \times(\alpha-\beta)^{2}=\left(\alpha^{2}+\beta^{2}+2 \alpha \beta\right)\left(\alpha^{2}+\beta^{2}-2 \alpha \beta\right)$
$\left.\left.\left.=\left\{(\alpha+\beta)^{2}-2 \alpha \beta+2 \alpha \beta\right)\right\}(\alpha+\beta)^{2}-2 \alpha \beta-2 \alpha \beta\right)\right\}$
$\left.\left.=\left\{(\alpha+\beta)^{2}\right\}(\alpha+\beta)^{2}-4 \alpha \beta\right)\right\}$
$\left.\left.=\left\{(-p)^{2}\right\}(-p)^{2}-4 q\right)\right\}$
$=p^{2}\left\{p^{2}-4 q\right\}$
$=$ Required polynomial is $f(x)=k\left(x^{2}-s x+p\right)$

$$
=\mathrm{k}\left\{\mathrm{x}^{2}-2\left(p^{2}-2 q\right) \mathrm{x}+p^{2}\left(p^{2}-4 q\right)\right\}
$$

## JANAK RAJ KALIA (TGT MATHS )

E-MAIL-irkalia@rediffmail.com
IF YOU WANT WHOLE SA-1 UNSOLVED EXERCISE OF SA-1
CLASS -X ,THEN CONTACT - 09464074055, 09781674055

